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ABSTRACT
Determining the spatial and temporal discretization is an important part of setting up a
model. As a general rule for numerical models, the discretization has to be fine enough
on one hand to show most of the details of the solution. At the same time, it cannot be
too fine to prevent excessive demand for run time and computer resources.

In this paper, analytical expressions are obtained for optimal mesh size using
the physical parameters of the governing ipartial differential equation (PDE), space and
time scales under investigation, and run time constraints. The paper describes how
sensitive the discretization is to each of the attributes around the optimum.

INTRODUCTION
Unconditionally stable numerical methods using implicit or other methods have made
it possible for modelers to use almost any discretization with computer models. Unlike
explicit methods where there is some error control because of the stability condition,
implicit models such as MODFLOW need guidelines to select discretizations.

Model run time and numerical error are two of the conditions that determine the
guidelines. They both depend on the level of discretization. The level of discretization
(∆x, ∆t) depends on the smallest space and time harmonic that needs to be simulated
(k, f ) with a given maximum error (εT ). Out of the three variables (i) ∆x,∆t, (ii) k, f ,
and (iii) εT , if two are known, the third can be calculated. The run time, and the
storage space are the resources required for model runs. Considering that large model
applications need expensive resources, and the chance for making mistakes is high, it
is important to understand numerical error and run time before any discretization is
finalized.

A number of equations are available to calculate the numerical error in ground-
water flow (Lal, 1998, 2000). These expressions use dimensionless spatial and tempo-
ral discretizations to describe the error as a percentage of the amplitude of the solution.
They provide an upper bound to the numerical error in a given model. Equations are
also available for run times of numerical models in terms of the dimensional discretiza-
tions. Even if all these equations are derived assuming sinusoidal solutions representing
harmonics and assuming boundary disturbances dominate all other stresses, the results
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can be useful in model applications in a number of useful ways. Results in the current
paper are obtained using these equations.

Design of space and time discretizations in a model application can take place
in two stages. In the first stage, the size of the smallest harmonic in space and time that
can be observed is determined based on the speed of the available computer and the
maximum run time allowed. In the second stage, the discretization needed for obtaining
this solution with a specific accuracy is calculated considering that for any harmonic of
the solution, a higher accuracy implies a higher level of discretization and a higher cost.
Since a model solution consists of many harmonics, once a discretization is selected,
it allows harmonics of various other magnitudes to be viewed with various accuracies
that can be calculated assuming each harmonic resulted from Fourier’s decomposition.

Current study is aimed at understanding the benefits and costs associated with
model applications based on numerical error and run time. Expressions are obtained
for the optimal discretization based on these criteria.
THEORETICAL BACKGROUND
Two dimensional groundwater flow can be explained using the following governing
equation. (Bear, 1979).
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in which, H = water level or water head; S = summation of source and sink terms rep-
resenting rainfall, evapotranspiration and infiltration; Tc = aquifer transmissivity; sc =
storage coefficient, all assuming isotropic materials.
Numerical error
Numerical errors are present in computer models because they use discrete values in
representing continuous functions explaining flow conditions. Numerical methods can
only solve governing equations approximately. For numerical methods based on finite
difference methods for groundwater flow equations, an analytical expression can be de-
rived for the numerical error resulting from the truncation of the Taylor series (Hirsch,
1989, Lal, 1998).

ε = 1−|G| (2)
in which, ε = numerical error per time step as a fraction of the amplitude; G = ratio
of amplitudes of numerical and analytical solutions, or the amplification factor of the
numerical method.

G =
1−4d(1−α)βsin2(φ/2)

1+4dαβsin2(φ/2)

1
e−dβφ2 (3)

where φ = k ∆x = dimensionless discretization in space; k = 2π/λ = wave number
of the harmonic; λ = wave length of spatial disturbance; ψ = f ∆t = dimensionless
discretization in time; f = 2π/P = frequency; P = period of disturbance; β = Tc∆t

sc∆x2 =
ψ

dφ2 = mesh ratio; d = 1,2 for one and two dimensional disturbances in square grids.
Only 1-D disturbances are looked at in this paper.

2



The cumulative or maximum numerical error after many time steps, εT , depends
on the number of time steps nt , and the error at each time step ε. Error εT is bound by
ntε, in which nt = T/∆t.

εT ≈
ε

βφ2
Tc

sc
k2 =

ε
dβφ2 ( f T ) =

ε
ψ

( f T ) (4)

where, T = maximum duration over which a given harmonic stays in the computational
domain and accumulates errors. Considering that harmonics die in the solution domain
in diffusion problems, the fate of a disturbance generated at the boundary is useful in
calculating a maximum value for T . A value of ( f T ) = 1 is found to be suitable for
this approximate calculation (Lal, 2000). Figure 1 shows how the maximum error εT

calculated using these assumptions show the variation of the error with the level of
discretization. Two curves for mesh ratio β of 0.5 and 10 are also shown indicating that
β < 0.5 represents a zone in which an explicit solutions would be viable and β > 10
represents a zone in which the mesh ratio would be too large. The figure shows that the
maximum error rises rapidly as the discretization gets coarser. It is seen that the spatial
discretization required is relatively coarser that the temporal discretization because the
numerical method is generally second order accurate in space.

Equation (4) can be simplified if φ is small by using a truncated Taylor series
expansion for ε. For explicit and implicit 1-D and 2-D finite difference schemes,

εT (expl/impl 1-D) ≈
f T φ2

2 (∓β−
1
6) (5)

εT (expl/impl 2-D) ≈ f T φ2(±β−
1

12
) (6)

The positive and negative signs apply for the explicit and implicit methods. All these
equations for maximum error are valid for problems analyzing boundary stresses. It is
assumed for convenience that these equations are also capable of representing errors
due to other types of stresses in some form.
Run time
When analyzing the cost of a model run, it is important to consider (1) the capital cost
associated with a model setup, which is mainly the cost of a computer system with
the required disk space, and (2) the cost of running the model for a given time. The
benefit consists of knowing the water levels or the discharges with a certain accuracy.
It is not easy to carry out a cost benefit analysis for a model application. However,
the following analysis is useful considering that run time is the critical factor in many
model applications.

Model run time depends on the speed of the machine and the amount of compu-
tations involved. The computer speed (rate of executions) is measured as the number of
floating point operations per second cs (Megaflops) of the computer. The run time for
a 2-D finite difference method can be calculated as (Lal, 1998)

tr =
wu

cs
ntMN =

wuTsA f k2

csψφ2 =
B

ψφ2 (7)
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in which, tr = run time; nt = Ts/∆t number of time steps; wu = the number of floating
point operations required per cell per time step in the model, to be determined using ex-
perimentation for each model; M,N = the number of spatial discretizations in X and Y
directions. The number of cells in the domain = nc = MN = A/(∆x ∆y) for rectangular
problems in which A = area covered by the model. A variable B = wuTsA f k2/cs is used
to simplify calculations. B represents the number of hours needed for an ideal problem.
An easy way to calculate B is to use B = wunt ncψφ2/cs from (7) and assume nominal
values such as φ = 0.5 and ψ = 0.2. Typical values of cs for the Sun Sparc 20 and a Sun
Ultra 2 used for a test are found to be cs = 4.1 and 13.8 Kflops respectively. Dongarra
(1998) publishes a list of run times for many other computers. Typical values of wu are
found to be wu = 15.7 and 28.2 Kflops/cell/time step for explicit and successive over
relaxation (SOR) models. A value of wu = 14.8 Kflops/cell/time was be obtained for a
MODFLOW model using basic, river, drain and well packages with evapotranspiration.

In the case of groundwater problems, the wave number k is related to the dis-
turbing frequency f where k =

√

f sc/(2Tc). Now, (7) can be written as

tr =
wuTsA f k2

csψφ2 =
2wuTsATck4

csψφ2 =
wuTsA f 2sc

2csTcψφ2 (8)

which shows that run time can be expressed as a function of f or k. The results show
that in a properly discretized model, capturing temporal information half the size is
four times more expensive, and capturing spatial information half the size in 1-D is
sixteen times more expensive. In the practical design of model applications, (8) is the
first equation used to calculate the size of the smallest spatial or temporal feature (k or
f ) that can be simulated using the model.

The results of this analysis can be used to demonstrate the use of a MODFLOW
model with 179 × 164 square cells of size 150 m and 365 time steps of one day
for a simulation. Run time is calculated using (7) as tr = 179× 164× 365× 14.8×
103/(4.1× 106 × 3600) for a Sparc 10 to give 10.8 Hrs. If φ = 0.5 and ψ = 0.2 are
assumed, k = φ/∆x = 0.0033 m−1 or the wavelength of the smallest spatial scale sim-
ulated is λ = 2π/k = 1885 m. A similar calculation is possible for f = 0.2 day−1 and
P = 31 days. The value of B can be obtained for this problem using φ = 0.5 and ψ =
0.2 in (7) as B = 0.54 Hrs. Figure 2 shows the variation of the model run time for this
problem focusing on the smallest features mentioned above. The figure shows that run
time increases as the discretization gets finer.

Equation (7) for run time, and equation (5) for model error can be combined
to obtain a relationship between them. An assumption of small φ and a truncation
of the higher order terms in (5) is needed for this. The resulting equation is εT ≈
( f T ) φ2β/2 = ψ/2 for implicit 1-D models when ( f T ) =1. The relationship between
the maximum error and the run time is

εT tr =
wuTsA f k2

2csφ2 =
B

2φ2 (9)
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Figure 3 shows the variation of the maximum error with the run time for various levels
of spatial discretizations. The example shown earlier with B = 0.54 Hrs is used for the
illustration. For a given spatial discretization identified by a single curve in the plot,
variable time steps give an opportunity to traverse through a wide range of εT and tr
values. The figure shows that if you start with very small values of φ such as 0.1, it is
prohibitively expensive to obtain small errors. It also shows that when φ is as large as
1.0, the error once again becomes bound. In this example, it is assumed that the model
domain described by Ts and A, and the solution harmonic under focus described by f
and k remain the same, and only the discretization is varied.
Costs
Consider the following simple expression for the total cost of a model run.

C = tr cr + |εT | ce (10)

in which, cr = cost of running the computer per unit run time in $/unit time; ce = the
cost associated with increasing the error by 1%. The optimal run time tro for which the
cost is minimum is the point of the tangent of the error versus run time curve and the
straight line describing the marginal cost line. At this point,

tro =

√

B
2φ2

√

ce

cr
(11)

εTo =

√

B
2φ2

√

cr

ce
(12)

ψo =

√

B
2φ2

√

cr

ce
(13)

in which the subscript o represents optimal values. These results show that an optimal
time step or ψo exists for the problem of linear cost function, and the optimum tro and
εTo values are proportional to the square root of the cost ratio ce/cr. If the cost of an
error is high and the cost of a run is low, the run time automatically increases.
CONCLUSIONS
Run times and maximum numerical errors are the key factors deciding the discretiza-
tions of implicit numerical models for groundwater flow. Very small or very large
discretizations may not be suitable for these models because of excessive run time and
or numerical error problems. It has been shown that an optimum exists for the size of
the discretization once certain cost functions can be assumed. The results show that
selecting a discretization is a balancing act. Once selected, a model can be used to see
a wide variety of spatial and temporal features with a wide range of accuracies. Large
features can be seen with a higher accuracy and small features can be seen with a lower
accuracy. The results include actual examples showing the calculation of run time for
a MODFLOW model.
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Figure 1: Maximum numerical error as a percentage, as a function of φ and ψ.
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Figure 2: Model run time as a function of φ and ψ. To calculate run time, multiply the
contour value by B (0.54 Hrs for the example)
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